Комплексные числа и операции с ними
DSPL-2.0 — свободная библиотека алгоритмов цифровой обработки сигналов Распространяется под лицензией LGPL v3 Страница проекта на SourceForge |
Известно, что область определения некоторых функций на множестве вещественных чисел ограничена. Например функция определена для , аналогично можно вспомнить, что функция определена для , а функция определена для .
Однако, ограниченная область определения функций на множестве вещественных чисел не означает, что , или не имеют смысла. Ограниченная область определения функций на множестве вещественных чисел говорит лишь о том, что не может быть представлено вещественным числом. Действительно, среди вещественных чисел не найти такого числа , квадрат которого был бы равен .
При решении квадратных уравнений часто возникает ситуация, когда дискриминант отрицательный. В этом случае это означает что парабола не пересекает прямую абсцисс ни в одной точке. Другими словами, корни квадратного уравнения не существуют среди вещественных значений и их также надо искать за пределами вещественных чисел.
Все бесконечное множество вещественных чисел можно представить в виде одной числовой прямой (смотри рисунок 1), на которой мы можем откладывать рациональные и иррациональные вещественные числа. Но на этой прямой нет числа , значит его надо искать вне числовой прямой. Таким образом мы должны расширить множество вещественных чисел до множества в котором значения , или уже не бессмысленны, а являются такими же обычными числами в этом расширенном множестве, как на множестве вещественных чисел.
Естественным расширением числовой прямой является плоскость, которую называют комплексной плоскостью. Числовая прямая вещественных чисел и ее расширение до комплексной плоскости показано на рисунке 1. Любая точка на комплексной плоскости определяет одно комплексное число. Например на рисунке 1 показано число .
Значение вещественного числа однозначно определяет его позицию на числовой прямой, однако для определения позиции на плоскости одного числа недостаточно.
Для «навигации» по комплексной плоскости вводятся две прямые и , которые пересекаются в начале координат. Прямая это числовая прямая, называемая реальной осью, на которой лежат все вещественные числа. Прямая называется мнимой осью и она перпендикулярна реальной оси . Оси и делят комплексную плоскость на четверти, как это показано на рисунке 1.
Любая точка комплексной плоскости задается двумя координатами и по осям и соответственно. При этом само комплексное число можно записать как , где называется реальной частью и задает координату точки комплексной плоскости на вещественной прямой , а называется мнимой частью и задает координату точки комплексной плоскости на мнимой оси .
Для того чтобы отделить одну координату от другой (реальную и мнимую части) вводят число , называемое мнимой единицей. Это так раз то число, которого не существует на множестве действительных чисел. Оно обладает особым свойством: . Тогда комплексное число может не только перемещаться по вещественной прямой вправо и влево, но и двигаться по комплексной плоскости потому что мы добавили ему слагаемое с мнимой единицей .
Мнимую единицу в математической литературе принято обозначать как , но в технике буква уже закреплена за обозначением электрического тока, поэтому чтобы избежать путаницы мы будем обозначать мнимую единицу буквой .
Если и , тогда число является действительным и располагается на реальной оси .
Если и , тогда число является чисто мнимым и располагается на мнимой оси .
Если и , тогда число располагается в одной из четвертей комплексной плоскости.
Представление комплексного числа как называют алгебраической формой записи. Если из начала координат комплексной плоскости к точке восстановить вектор (смотри рисунок 1), то можно вычислить длину этого вектора как
Связь реальной и мнимой частей комплексного числа с его амплитудой и фазой представлено следующим выражением:
На рисунке 2 показаны значения параметра , в зависимости от того в какой четверти комплексной плоскости расположено число.
На рисунке 2а исходное комплексное число расположено в первой четверти комплексной плоскости и .
Тогда и значение фазы комплексного числа равно:
Рассмотрим случай, когда комплексное число расположено во второй четверти комплексной плоскости (рисунок 2б), т.е. и . В этом случае и угол также будет отрицательным (красная пунктирная линия). Тогда для того, чтобы получить корректное значение фазы необходимо ввести поправку рад:
Пусть комплексное число расположено в третьей четверти комплексной плоскости (рисунок 2в), т.е. и . В этом случае и угол будет положительным (красная пунктирная линия). Тогда для того, чтобы получить корректное значение фазы необходимо ввести поправку рад:
Если расположено в четвертой четверти комплексной плоскости (рисунок 2г), т.е. и , то в этом случае и угол будет отрицательным и равным фазе комплексного числа без поправок ( рад):
Функция арктангенс-2 присутствует во всех математических приложениях и может быть использована для расчета верного угла поворота вектора комплексного числа.
Мы уже рассмотрели алгебраическую и тригонометрическую формы записи комплексного числа. Помимо алгебраической и тригонометрической формы существует также показательная форма комплексного числа:
Cоотношение (12) легко доказать, если произвести разложение экспоненты в ряд Тейлора:
Рассмотрим более подробно мнимую единицу в четной и нечетной степенях.
Из определения мнимой единицы можно сделать вывод, что , тогда , в свою очередь .
Таким образом, можно сделать вывод что .
Построим аналогичным образом соотношение для нечетных степеней: , тогда , в свою очередь и окончательно можно записать: . Тогда (14) можно представить как:
Необходимо отметить, что формула Эйлера является одной из важнейших в теории функций комплексного переменного. Так например при помощи формулы Эйлера можно связать математические константы и с использованием мнимой единицы :
В данном параграфе мы кратко рассмотрим операции над комплексными числами. Сумма двух комплексных чисел и представляет собой комплексное число :
При сложении реальные и мнимые части комплексного числа также складываются. На комплексной плоскости операцию сложения можно реализовать как сложение векторов комплексных чисел по правилу параллелограмма (рисунок 3а).
Разность двух комплексных чисел и представляет собой комплексное число
Для того чтобы получить формулу для умножения комплексных числен необходимо перемножить два комплексных числа по правилу умножения многочленов:
Умножение комплексных проще выполнять если числа представлены в показательной форме:
При перемножении в показательной форме модули комплексных чисел перемножаются а фазы складываются. Операция произведения комплексных чисел показано на рисунке 3в.
Введем понятие комплексно-сопряженного числа. Число является комплексно-сопряженным числу .
Комплексно-сопряженные числа отличаются знаком перед мнимой частью.
Графически комплексно-сопряженные числа показаны на рисунке 3г.
При этом можно заметить, что модули комплексно-сопряженных чисел равны , а фазы имеют противоположные знаки.
Произведение комплексно-сопряженных чисел
Из элементарных операций нам осталось рассмотреть лишь деление комплексных чисел. Рассмотрим результат деления комплексных чисел в показательной форме:
Таким образом, при делении комплексных чисел модуль частного равен частному модулей исходных чисел, а фаза равна разности фаз исходных чисел.
При этом необходимо потребовать, чтобы был не равен нулю, иначе у нас появится деление на ноль при расчете модуля частного.
Рассмотрим теперь деление комплексных чисел в алгебраической форме:
Домножим и числитель и знаменатель на число, комплексно-сопряженное знаменателю:
В данной статье введено понятие комплексного числа и рассмотрены основные его свойства. Введено понятие мнимой единицы.
Подробно рассмотрена комплексная плоскость и представление комплексных чисел в алгебраической, тригонометрической и показательной формах. Введены понятия модуля и фазы комплексного числа.
Рассмотрены основные арифметические операции над комплексными числами.
Показано как выполнять операции сложения, вычитания в алгебраической форме, введено понятие комплексно-сопряженных чисел, а также операции умножения и деления в показательной и алгебраической формах.